Preview

Russian Osteopathic Journal

Advanced search

Intraventricular hemorrhage — modern concepts of pathogenesis, risk factors, diagnostics and treatment (literature review)

https://doi.org/10.32885/2220-0975-2020-1-2-158-167

Abstract

Intraventricular hemorrhage (IVH) is a frequent neurological pathology among newborn infants (especially premature) and it is associated with development risk of such neurological complications as cerebral palsy, epilepsy, delayed psychomotor development, etc. The level of functional disorders correlates with the IVH level. The article observes in detail the IVH epidemiology, risk factors, pathogenesis, diagnostics and treatment. There was demonstrated the osteopathic diagnostics expediency and the appropriateness of multidisciplinary approach for the diagnostics and therapy of this pathology.

About the Author

K. L. Karimova
Children′s Republic Clinical Hospital of the Republic Tatarstan′ Health Care Ministry
Russian Federation

neurologist,

bld. 140 Orenburgskiy trakt, Kazan, 420138



References

1. Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J. Neurosurg. Pediat. 2012; 9 (3): 242–258. https://doi.org/10.1088/1367-2630/15/1/015008.Fluid

2. Guo J., Chen Q., Tang J., Zhang J., Tao Y., Li L., Zhu G., Feng H., Chen Z. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res. 2015; 1594: 115–124. https://doi.org/ 10.1016/j.brainres.2014.10.046

3. Ballabh P. Pathogenesis and prevention of intraventricular hemorrhage. Clin. Perinatol. 2014; 41 (1): 47–67. https://doi.org/ 10.1016/j.clp.2013.09.007

4. Cherdantseva S. Yu., Akarachkova E. S., Danilina O. M., Novikova N. E., Lebedeva D. I., Cherdantseva Yu. E., Orlova A. S. Cases of intracerebral hemorrhage in full-term neonates (incidental findings). Farmateka. 2019; 26 (10): 97–103 (in russ.). https: //dx.doi.org/10.18565/pharmateca.2019.10.97-103

5. Kazan S., Güra A., Uçar T., Korkmaz E., Ongun H., Akyuz M. Hydrocephalus after intraventricular hemorrhage in preterm and low-birth weight infants: analysis of associated risk factors for ventriculoperitoneal shunting. Surg. Neurol. 2005; 64: 77–81. https://doi.org/10.1016/j.surneu.2005.07.035

6. Ment L. R., Oh W., Philip A. G. S., Ehrenkranz R. A., Duncan C. C., Allan W., Taylor K. J. W., Schneider K., Katz K. H., Makuch R. W. Risk factors for early intraventricular hemorrhage in low birth weight infants. J. Pediat. 1992; 121: 776–783. https://doi.org/10.1016/S0022-3476(05)81915-8

7. Papile L. A., Burstein J., Burstein R., Koffl er H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J. Pediat. 1978; 92 (4): 529–534. https://doi.org/10.1016/S0022-3476(78)80282-0

8. Whitelaw A., Aquilina K. Management of posthaemorrhagic ventricular dilatation. Arch. Dis. Child. Fetal. Neonatal. Ed. 2012; 97 (3): 229–230. https://doi.org/10.1136/adc.2010.190173

9. Christian E. A., Jin D. L., Attenello F., Wen T., Cen S., Mack W. J., Krieger M. D., McComb J. G. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. J. Neurosurg. Pediat. 2016; 17 (3): 260–269. https://doi.org/10.3171/2015.7.PEDS15140

10. Poryo M., Boeckh J. C., Gortner L., Zemlin M., Duppré P., Ebrahimi-Fakhari D., Wagenpfeil S., Heckmann M., Mildenberger E., Hilgendorff A., Flemmer A. W., Frey G., Meyer S.; PROGRESS study consortium and NGFN — Nationales Genomforschungsnetz Deutschland. Ante-, peri- and postnatal factors associated with intraventricular hemorrhage in very premature infants. Early Hum. Dev. 2018; 116: 1–8. https://doi.org/10.1016/j.earlhumdev.2017.08.010

11. Waitz M., Nusser S., Schmid M. B., Dreyhaupt J., Reister F., Hummler H. Risk factors associated with intraventricular hemorrhage in preterm infants with ≤28 weeks gestational age. Klin. Pediat. 2016; 228 (5): 245–250. https://doi.org/10.1055/s-0042-111689

12. McCrea H. J., Ment L. R. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin. Perinatol. 2008; 35 (4): 777–792. https://doi.org/10.1016/j.clp.2008.07.014

13. Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediat. Res. 2010; 67 (1): 1–8. https://doi.org/10.1203/PDR.0b013e3181c1b176.

14. Roze E., Kerstjens J. M., Maathuis C. G., Horst H. J., Bos A. F. Risk factors for adverse outcome in preterminfants with periventricular hemorrhagic infarction. Pediatrics. 2008; 122 (1): 46–52. https://doi.org/10.1542/peds.2007-3305.

15. Sarkar S., Bhagat I., Dechert R., Schumacher R. E., Donn S. M. Severe intraventricular hemorrhage in preterm infants: comparison of risk factors and short-term neonatal morbidities between grade 3 and grade 4 intraventricular hemorrhage. Amer. J. Perinatol. 2009; 26 (6): 419–424. https://doi.org/10.1055/s-0029-1214237

16. Ballabh P., Xu H., Hu F., Braun A., Smith K., Rivera A., Lou N., Ungvari Z., Goldman S. A., Csiszar A., Nedergaard M. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat. Med. 2007; 13 (4): 477–485. https://doi.org/10.1038/nm1558

17. Braun A., Xu H., Hu F., Kocherlakota P., Siegel D., Chander P., Ungvari Z., Csiszar A., Nedergaard M., Ballabh P. Paucity of pericytes in germinal matrix vasculature of premature infants. J. Neurosci. 2007; 27 (44): 12012–12024. https://doi.org/10.1523/JNEUROSCI.3281-07.2007

18. El-Khoury N., Braun A., Hu F., Pandey M., Nedergaard M., Lagamma E. F., Ballabh P. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediat. Res. 2006; 59 (5): 673–679. https://doi.org/10.1203/01.pdr.0000214975.85311.9c

19. Shusharina N. N., Patrushev M. V., Silina E. V., Stupin V. A., Litvitsky P. F., Orlova A. S. Expression of genes for neurotransmitter transporters in astrocytes in different brain regions in experiment. J. Nevrol S. S. Korsakov. 2018; 118 (6): 58–64 (in russ.). https://doi.org/10.17116/jnevro20181186158

20. Semenza G. L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007; 2007(407):8. https://doi.org/10.1126/stke.4072007cm8

21. Xu H., Hu F., Sado Y., Ninomiya Y., Borza D. B., Ungvari Z., LaGamma E. F., Csiszar A., Nedergaard M., Ballabh P. Maturational changes in laminin, fi bronectin, collagen IV, and perlecan in germinal matrix, cortex, and white matter and effect of betamethasone. J. Neurosci. Res. 2008; 86 (7): 1482–1500. https://doi.org/10.1002/jnr.21618

22. Du Plessis A. J. Cerebrovascular injury in premature infants: current understanding and challenges for future prevention. Clin. Perinatol. 2008; 35 (4): 609–641. https://doi.org/10.1016/j.clp.2008.07.010

23. Kaiser J. R., Gauss C. H., Williams D. K. The effects of hypercapnia on cerebral autoregulation in ventilated very low birth weight infants. Pediat. Res. 2005; 58 (5): 931–935. https://doi.org/10.1203/01.pdr.0000182180.80645.0c

24. Bada H. S., Korones S. B., Perry E. H., Arheart K. L., Ray J. D., Pourcyrous M., Magill H. L., Runyan W. III, Somes G. W., Clark F. C., Tullis K. V. Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J. Pediat. 1990; 117: 607–614. https://doi.org/10.1016/s0022-3476(05)80700-0

25. Soul J. S., Hammer P. E., Tsuji M., Saul J. P., Bassan H., Limperopoulos C., Disalvo D. N., Moore M., Akins P., Ringer S., Volpe J. J., Trachtenberg F., du Plessis A. J. Fluctuating pressure passivity is common in the cerebral circulation of sick premature infants. Pediat. Res. 2007; 61: 467–473. https://doi.org/10.1203/pdr.0b013e31803237f6

26. Perlman J. M., Goodman S., Kreusser K. L., Volpe J. J. Reduction in intraventricular hemorrhage by elimination of fluctuating cerebral blood-flow velocity in preterm infants with respiratory distress syndrome. New Engl. J. Med. 1985; 312: 1353–1357.

27. Rennie J. M., South M., Morley C. J. Cerebral blood flow velocity variability in infants receiving assisted ventilation. Arch. Dis. Child. 1987; 62: 1247–1251. https://doi.org/10.1136/adc.62.12.1247

28. Fanaroff J. M., Fanaroff A. A. Blood pressure disorders in the neonate: hypotension and hypertension. Neonatol. A Pract. Approach to Neonatal. Dis. 2012: 585–592. https://doi.org/10.1007/978-88-470-1405-3_78

29. Miall-Allen V. M., de Vries L. S., Whitelaw A. G. Mean arterial blood pressure and neonatal cerebral lesions. Arch. Dis. Child. 1987; 62: 1068–1069. https://doi.org/10.1542/neo.8-1-e32

30. Perlman J. M., McMenamin J. B., Volpe J. J. Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome. Relation to the development of intraventricular hemorrhage. New Engl. J. Med. 1983; 309: 204–207. https://doi.org/10.1056/nejm198307283090402

31. Leffler C. W., Busija D. W., Beasley D. G. Effects of Indomethacin on cardiac outcome distribution in normal and asphyxiated piglets. Prostaglandins. 1986; 31: 183. https://doi.org/10.1016/0090-6980(86)90045-6

32. Ackerman W. E. IV, Rovin B. H., Kniss D. A. Epidermal growth factor and interleukin-1 (beta) utilize divergent signaling pathways to synergistically upregulate cyclooxygenase-2 gene expression in human amnion-derived WISH cells. Biol. Reprod. 2004; 71: 527. https://doi.org/10.1095/biolreprod.104.030841

33. Takada Y., Bhardwaj A., Paotdar P., Aggarwal B. B. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expresion cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene. 2004; 23: 9247. https://doi.org/10.1038/sj.onc.1208169

34. Kuwano T., Nakao S., Yamamoto H., Tsuneyoshi M., Yamamoto T., Kuwano M., Ono M. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 2004; 18: 300. https://doi.org/10.1096/fj.03-0473com

35. Rezaie P., Dean A., Male D., Ulfi g N. Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb. Cortex. 2005; 15 (7): 938–949. https://doi.org/10.1093/cercor/bhh194

36. Orlova A. S. Somatic disorders and free radical reactions in cerebrovascular disease. Basic Res. 2012; 8 (1): 220–224 (in russ.).

37. Akundi R. S., Candelario-Jalil E., Hess S., Hüll M., Lieb K., Gebicke-Haerter P. J., Fiebich B. L. Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-actived primary rat microglia. Glia. 2005; 51 (3): 199–208. https://doi.org/10.1002/glia.20198

38. Folkert R. D., Haynes R. L., Borenstein N. S., Belliveau R. A., Trachtenberg F., Rosenberg P. A., Volpe J. J., Kinney H. C. Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated telencephalic white matter. J. Neuropathol. Exp. Neurol. 2004; 63: 990–999. https://doi.org/10.1093/jnen/63.9.990

39. Antoniuk S., Da Silva R. V. Periventricular And Intraventricular hemorrhage in the premature infants. Rev Neurol. 2000; 31: 238–243. 40. Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J. Neurosurg. Pediat. 2012; 9: 242–258. https://doi.org/10.3171/2011.12.PEDS11136

40. Dolfin T., Skidmore M. B., Fong K. W., Hoskins E. M., Shennan A. T. Incidence, severity, and timing of subependymal and intraventricular hemorrhages in preterm infants born in a perinatal unit as detected by serial real-time ultrasound. Pediatrics. 1983; 71 (4): 541–546.

41. Mokhov D. E., Belash V. O. Methodology of clinical osteopathic examination: Studyguide. St. Petersburg: Izd-vo SZGMU im. I. I. Mechnikova; 2019; 80 p. (in russ.).

42. Egorova I. A. Hypertension-hydrocephalic syndrome in children of the first months of life (diagnosis and rehabilitation): Abstract Dis. Cand. Sci. (Med.). SPb., 2003 (in russ.).

43. Matoba N., Yu Y., Mestan K., Pearson C., Ortiz K., Porta N., Thorsen P., Skogstrand K., Hougaard D. M., Zuckerman B., Wang X. Differential patterns of 27 cord blood immune biomarkers across gestational age. Pediatrics. 2009; 123 (5): 1320–1328. https://doi.org/10.1542/peds.2008-1222

44. Licciardone J. C., Kearns C. M., Hodge L. M., Bergamini M. V.W. Associations of cytokine concentrations with key osteopathic lesions and clinical outcomes in patients with nonspecifi c chronic low back pain: results from the osteopathic trial. J. Amer. Osteopath. Ass. 2012; 112 (9): 596–605. https://doi.org/10.7556/jaoa.2012.112.9.596

45. Meltzer K. R., Standley P. R. Modeled repetitive motion strain and indirect osteopathic manipulative techniques in regulation of human fibroblast proliferation and interleukin secretion. J. Amer. Osteopath. Ass. 2007; 107 (12): 527–536.

46. Walkowski S., Singh M., Puertas J., Pate M., Goodrum K., Benencia F. Osteopathic manipulative therapy induces early plasma cytokine release and mobilization of a population of blood dendritic cells. PLoS One. 2014; 9 (3): e90132. https://doi.org/10.1371/journal.pone.0090132

47. Luque M. J., Tapia J. L., Villarroel L., Marshall G., Musante G., Carlo W., Kattan J., Neocosur Neonatal Network. A risk prediction model for severe intraventricular hemorrhage in very low birth weight infants and the effect of prophylactic indomethacin. J. Perinatol. 2014; 34 (1): 43–48. https://doi.org/10.1038/jp.2013.127

48. Radic J. A.E., Vincer M., McNeely P. D. Outcomes of intraventricular hemorrhage and posthemorrhagic hydrocephalus in a population-based cohort of very preterm infants born to residents of Nova Scotia from 1993 to 2010. J. Neurosurg. Pediat. 2015; 15: 580–588. https://doi.org/10.3171/2014.11.PEDS14364

49. Adams-Chapman I., Hansen N. I., Stoll B. J., Higgins R. Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics. 2008; 121: 1167–e1177. https://doi.org/10.1542/peds.2007-0423

50. Sasidharan P., Marquez E., Dizon E., Sridhar C. V. Developmental outcome of infants with severe intracranialintraventricular hemorrhage and hydrocephalus with and without ventriculoperitoneal shunt. Childs Nerv Syst. 1986; 2: 149–152. https://doi.org/10.1007/BF00270845

51. O′Shea T. M., Allred E. N., Kuban K. C., Hirtz D., Specter B., Durfee S., Paneth N., Leviton A.; ELGAN Study Investigators. Intraventricular hemorrhage and developmental outcomes at 24 months of age in extremely preterm infants. J. Child. Neurol. 2012; 27 (1): 22–29. https://doi.org/10.1177/0883073811424462

52. Srinivasakumar P., Limbrick D., Munro R., Mercer D., Rao R., Inder T., Mathur A. Posthemorrhagic ventricular dilatationimpact on early neurodevelopmental outcome. Amer. J. Perinatol. 2013; 30:207–214. https://doi.org/10.1055/s-0032-1323581

53. De Vries L. S., Liem K. D., van Dijk K., Smit B. J., Sie L., Rademaker K. J., Gavilanes A. W.; Dutch Working Group of Neonatal Neurology. Early versus late treatment of posthaemorrhagic ventricular dilatation: results of a retrospective study from five neonatal intensive care units in The Netherlands. Acta Paediat. 2002; 91 (2): 212–217. https://doi.org/10.3171/2011.12.PEDS11136

54. Brouwer A., Groenendaal F., van Haastert I. L., Rademaker K., Hanlo P., De Vries L. Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for posthemorrhagic ventricular dilatation. J. Pediat. 2008; 152: 648–654. https://doi.org/10.1016/j.jpeds.2007.10.005

55. Singh R., Visintainer P. F. Predictive models for severe intraventricular hemorrhage in preterm infants. J. Perinatol. 2014; 34 (10): 802. https://doi.org/10.1038/jp.2014.152

56. Mokhov D. E., Tregubova E. S., Kuzmina Yu. O., Potekhina Yu. P. Possibility of using osteopathic methods of treatment in infants of the first year of life. Clin. Pract. Pediat. 2018; 13 (5): 91–97 (in russ.). https://doi.org/10.20953/1817-7646-2018-5-91-97

57. Dudin A. V., Tueva I. D., Belash V. O. Evaluation of the Effectiveness of Osteopathic Methods of Correction in Combined Therapy of Pseudobulbar Dysarthria in Children of Preschool Age. Russian Osteopathic Journal. 2017; 1–2 (36–37): 53–60 (in russ.). https://doi.org/10.32885/2220-0975-2017-1-2-53-60

58. Lanaro D., Ruffini N., Manzotti A., Lista G. Osteopathic manipulative treatment showed reduction of length of stay and costs in preterm infants. A systematic review and meta-analysis. Medicine (Baltimore). 2017. Mar; 96 (12): e6408. https://doi.org/10.1097/md.0000000000006408

59. Cerritelli F., Pizzolorusso G., Ciardelli F., La Mola E., Cozzolino V., Renzetti C. et al. Effect of osteopathic manipulative treatment on length of stay in a population of preterm infants: a randomized controlled trial. BMC Pediat. 2013. Apr 26; 13: 65. https://doi.org/10.1186/1471-2431-13-65

60. Pizzolorusso G., Cerritelli F., Accorsi A., Lucci C., Tubaldi L., Lancellotti J. et al. The effect of optimally timed osteopathic manipulative treatment on length of hospital stay in moderate and late preterm infants: results from a RCT. Evid Based Complement Alternat Med. 2014: 1–10. https://doi.org/10.1155/2014/243539


Review

For citations:


Karimova K.L. Intraventricular hemorrhage — modern concepts of pathogenesis, risk factors, diagnostics and treatment (literature review). Russian Osteopathic Journal. 2020;(1-2):158-167. (In Russ.) https://doi.org/10.32885/2220-0975-2020-1-2-158-167

Views: 586


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-0975 (Print)
ISSN 2949-3064 (Online)