Внутрижелудочковое кровоизлияние — современные представления о патогенезе, факторах риска, диагностике и лечении (обзор литературы)
https://doi.org/10.32885/2220-0975-2020-1-2-158-167
Аннотация
Об авторе
Л. К. КаримоваРоссия
врач-невролог,
420138 Казань, Оренбургский тракт, д. 140
Список литературы
1. Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J. Neurosurg. Pediat. 2012; 9 (3): 242–258. https://doi.org/10.1088/1367-2630/15/1/015008.Fluid
2. Guo J., Chen Q., Tang J., Zhang J., Tao Y., Li L., Zhu G., Feng H., Chen Z. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res. 2015; 1594: 115–124. https://doi.org/ 10.1016/j.brainres.2014.10.046
3. Ballabh P. Pathogenesis and prevention of intraventricular hemorrhage. Clin. Perinatol. 2014; 41 (1): 47–67. https://doi.org/ 10.1016/j.clp.2013.09.007
4. Черданцева С. Ю., Акарачкова Е. С., Данилина О. М., Новикова Н. Е., Лебедева Д. И., Черданцева Ю. Е., Орлова А. С. Случаи внутримозговых кровоизлияний у доношенных новорожденных (случайные находки). Фарматека. 2019; 26 (10): 97–103. https: //dx.doi.org/10.18565/pharmateca.2019.10.97-103.
5. Kazan S., Güra A., Uçar T., Korkmaz E., Ongun H., Akyuz M. Hydrocephalus after intraventricular hemorrhage in preterm and low-birth weight infants: analysis of associated risk factors for ventriculoperitoneal shunting. Surg. Neurol. 2005; 64: 77–81. https://doi.org/10.1016/j.surneu.2005.07.035
6. Ment L. R., Oh W., Philip A. G. S., Ehrenkranz R. A., Duncan C. C., Allan W., Taylor K. J. W., Schneider K., Katz K. H., Makuch R. W. Risk factors for early intraventricular hemorrhage in low birth weight infants. J. Pediat. 1992; 121: 776–783. https://doi.org/10.1016/S0022-3476(05)81915-8
7. Papile L. A., Burstein J., Burstein R., Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J. Pediat. 1978; 92 (4): 529–534. https://doi.org/10.1016/S0022-3476(78)80282-0
8. Whitelaw A., Aquilina K. Management of posthaemorrhagic ventricular dilatation. Arch. Dis. Child. Fetal. Neonatal. Ed. 2012; 97 (3): 229–230. https://doi.org/10.1136/adc.2010.190173
9. Christian E. A., Jin D. L., Attenello F., Wen T., Cen S., Mack W. J., Krieger M. D., McComb J. G. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. J. Neurosurg. Pediat. 2016; 17 (3): 260–269. https://doi.org/10.3171/2015.7.PEDS15140
10. Poryo M., Boeckh J. C., Gortner L., Zemlin M., Duppré P., Ebrahimi-Fakhari D., Wagenpfeil S., Heckmann M., Mildenberger E., Hilgendorff A., Flemmer A. W., Frey G., Meyer S.; PROGRESS study consortium and NGFN — Nationales Genomforschungsnetz Deutschland. Ante-, peri- and postnatal factors associated with intraventricular hemorrhage in very premature infants. Early Hum. Dev. 2018; 116: 1–8. https://doi.org/10.1016/j.earlhumdev.2017.08.010
11. Waitz M., Nusser S., Schmid M. B., Dreyhaupt J., Reister F., Hummler H. Risk factors associated with intraventricular hemorrhage in preterm infants with ≤28 weeks gestational age. Klin. Pediat. 2016; 228 (5): 245–250. https://doi.org/10.1055/s-0042-111689
12. McCrea H. J., Ment L. R. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin. Perinatol. 2008; 35 (4): 777–792. https://doi.org/10.1016/j.clp.2008.07.014
13. Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediat. Res. 2010; 67 (1): 1–8. https://doi.org/10.1203/PDR.0b013e3181c1b176.
14. Roze E., Kerstjens J. M., Maathuis C. G., Horst H. J., Bos A. F. Risk factors for adverse outcome in preterminfants with periventricular hemorrhagic infarction. Pediatrics. 2008; 122 (1): 46–52. https://doi.org/10.1542/peds.2007-3305.
15. Sarkar S., Bhagat I., Dechert R., Schumacher R. E., Donn S. M. Severe intraventricular hemorrhage in preterm infants: comparison of risk factors and short-term neonatal morbidities between grade 3 and grade 4 intraventricular hemorrhage. Amer. J. Perinatol. 2009; 26 (6): 419–424. https://doi.org/10.1055/s-0029-1214237
16. Ballabh P., Xu H., Hu F., Braun A., Smith K., Rivera A., Lou N., Ungvari Z., Goldman S. A., Csiszar A., Nedergaard M. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat. Med. 2007; 13 (4): 477–485. https://doi.org/10.1038/nm1558
17. Braun A., Xu H., Hu F., Kocherlakota P., Siegel D., Chander P., Ungvari Z., Csiszar A., Nedergaard M., Ballabh P. Paucity of pericytes in germinal matrix vasculature of premature infants. J. Neurosci. 2007; 27 (44): 12012–12024. https://doi.org/10.1523/JNEUROSCI.3281-07.2007
18. El-Khoury N., Braun A., Hu F., Pandey M., Nedergaard M., Lagamma E. F., Ballabh P. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediat. Res. 2006; 59 (5): 673–679. https://doi.org/10.1203/01.pdr.0000214975.85311.9c
19. Шушарина Н. Н., Патрушев М. В., Силина Е. В., Ступин В. А., Литвицкий П. Ф., Орлова А. С. Экспрессия генов транспортеров нейромедиаторов в астроцитах разных отделов головного мозга в эксперименте. Журн. неврол. и психиат. им. C. C. Корсакова. 2018; 118 (6): 58–64. https://doi.org/10.17116/jnevro20181186158
20. Semenza G. L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007; 2007(407):8. https://doi.org/10.1126/stke.4072007cm8
21. Xu H., Hu F., Sado Y., Ninomiya Y., Borza D. B., Ungvari Z., LaGamma E. F., Csiszar A., Nedergaard M., Ballabh P. Maturational changes in laminin, fi bronectin, collagen IV, and perlecan in germinal matrix, cortex, and white matter and effect of betamethasone. J. Neurosci. Res. 2008; 86 (7): 1482–1500. https://doi.org/10.1002/jnr.21618
22. Du Plessis A. J. Cerebrovascular injury in premature infants: current understanding and challenges for future prevention. Clin. Perinatol. 2008; 35 (4): 609–641. https://doi.org/10.1016/j.clp.2008.07.010
23. Kaiser J. R., Gauss C. H., Williams D. K. The effects of hypercapnia on cerebral autoregulation in ventilated very low birth weight infants. Pediat. Res. 2005; 58 (5): 931–935. https://doi.org/10.1203/01.pdr.0000182180.80645.0c
24. Bada H. S., Korones S. B., Perry E. H., Arheart K. L., Ray J. D., Pourcyrous M., Magill H. L., Runyan W. III, Somes G. W., Clark F. C., Tullis K. V. Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J. Pediat. 1990; 117: 607–614. https://doi.org/10.1016/s0022-3476(05)80700-0
25. Soul J. S., Hammer P. E., Tsuji M., Saul J. P., Bassan H., Limperopoulos C., Disalvo D. N., Moore M., Akins P., Ringer S., Volpe J. J., Trachtenberg F., du Plessis A. J. Fluctuating pressure passivity is common in the cerebral circulation of sick premature infants. Pediat. Res. 2007; 61: 467–473. https://doi.org/10.1203/pdr.0b013e31803237f6
26. Perlman J. M., Goodman S., Kreusser K. L., Volpe J. J. Reduction in intraventricular hemorrhage by elimination of fluctuating cerebral blood-flow velocity in preterm infants with respiratory distress syndrome. New Engl. J. Med. 1985; 312: 1353–1357.
27. Rennie J. M., South M., Morley C. J. Cerebral blood flow velocity variability in infants receiving assisted ventilation. Arch. Dis. Child. 1987; 62: 1247–1251. https://doi.org/10.1136/adc.62.12.1247
28. Fanaroff J. M., Fanaroff A. A. Blood pressure disorders in the neonate: hypotension and hypertension. Neonatol. A Pract. Approach to Neonatal. Dis. 2012: 585–592. https://doi.org/10.1007/978-88-470-1405-3_78
29. Miall-Allen V. M., de Vries L. S., Whitelaw A. G. Mean arterial blood pressure and neonatal cerebral lesions. Arch. Dis. Child. 1987; 62: 1068–1069. https://doi.org/10.1542/neo.8-1-e32
30. Perlman J. M., McMenamin J. B., Volpe J. J. Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome. Relation to the development of intraventricular hemorrhage. New Engl. J. Med. 1983; 309: 204–207. https://doi.org/10.1056/nejm198307283090402
31. Leffler C. W., Busija D. W., Beasley D. G. Effects of Indomethacin on cardiac outcome distribution in normal and asphyxiated piglets. Prostaglandins. 1986; 31: 183. https://doi.org/10.1016/0090-6980(86)90045-6
32. Ackerman W. E. IV, Rovin B. H., Kniss D. A. Epidermal growth factor and interleukin-1 (beta) utilize divergent signaling pathways to synergistically upregulate cyclooxygenase-2 gene expression in human amnion-derived WISH cells. Biol. Reprod. 2004; 71: 527. https://doi.org/10.1095/biolreprod.104.030841
33. Takada Y., Bhardwaj A., Paotdar P., Aggarwal B. B. Nonsteroidal anti-infl ammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expresion cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene. 2004; 23: 9247. https://doi.org/10.1038/sj.onc.1208169
34. Kuwano T., Nakao S., Yamamoto H., Tsuneyoshi M., Yamamoto T., Kuwano M., Ono M. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 2004; 18: 300. https://doi.org/10.1096/fj.03-0473com
35. Rezaie P., Dean A., Male D., Ulfi g N. Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb. Cortex. 2005; 15 (7): 938–949. https://doi.org/10.1093/cercor/bhh194
36. Орлова А. С. Соматические расстройства и свободнорадикальные процессы при цереброваскулярной болезни. Фундаментальные исследования. 2012; 8 (1): 220–224.
37. Akundi R. S., Candelario-Jalil E., Hess S., Hüll M., Lieb K., Gebicke-Haerter P. J., Fiebich B. L. Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-actived primary rat microglia. Glia. 2005; 51 (3): 199–208. https://doi.org/10.1002/glia.20198
38. Folkert R. D., Haynes R. L., Borenstein N. S., Belliveau R. A., Trachtenberg F., Rosenberg P. A., Volpe J. J., Kinney H. C. Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated telencephalic white matter. J. Neuropathol. Exp. Neurol. 2004; 63: 990–999. https://doi.org/10.1093/jnen/63.9.990
39. Antoniuk S., Da Silva R. V. Periventricular And Intraventricular hemorrhage in the premature infants. Rev Neurol. 2000; 31: 238–243. 40. Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J. Neurosurg. Pediat. 2012; 9: 242–258. https://doi.org/10.3171/2011.12.PEDS11136
40. Dolfin T., Skidmore M. B., Fong K. W., Hoskins E. M., Shennan A. T. Incidence, severity, and timing of subependymal and intraventricular hemorrhages in preterm infants born in a perinatal unit as detected by serial real-time ultrasound. Pediatrics. 1983; 71 (4): 541–546.
41. Мохов Д. Е., Белаш В. О. Методология клинического остеопатического обследования: Учебное пособие. СПб.: Изд-во СЗГМУ им. И. И. Мечникова; 2019; 80 с.
42. Егорова И. А. Гипертензионно-гидроцефальный синдром у детей первых месяцев жизни (диагностика и реабилитация): Автореф. дис. канд. мед. наук. СПб., 2003.
43. Matoba N., Yu Y., Mestan K., Pearson C., Ortiz K., Porta N., Thorsen P., Skogstrand K., Hougaard D. M., Zuckerman B., Wang X. Differential patterns of 27 cord blood immune biomarkers across gestational age. Pediatrics. 2009; 123 (5): 1320–1328. https://doi.org/10.1542/peds.2008-1222
44. Licciardone J. C., Kearns C. M., Hodge L. M., Bergamini M. V.W. Associations of cytokine concentrations with key osteopathic lesions and clinical outcomes in patients with nonspecifi c chronic low back pain: results from the osteopathic trial. J. Amer. Osteopath. Ass. 2012; 112 (9): 596–605. https://doi.org/10.7556/jaoa.2012.112.9.596
45. Meltzer K. R., Standley P. R. Modeled repetitive motion strain and indirect osteopathic manipulative techniques in regulation of human fibroblast proliferation and interleukin secretion. J. Amer. Osteopath. Ass. 2007; 107 (12): 527–536.
46. Walkowski S., Singh M., Puertas J., Pate M., Goodrum K., Benencia F. Osteopathic manipulative therapy induces early plasma cytokine release and mobilization of a population of blood dendritic cells. PLoS One. 2014; 9 (3): e90132. https://doi.org/10.1371/journal.pone.0090132
47. Luque M. J., Tapia J. L., Villarroel L., Marshall G., Musante G., Carlo W., Kattan J., Neocosur Neonatal Network. A risk prediction model for severe intraventricular hemorrhage in very low birth weight infants and the effect of prophylactic indomethacin. J. Perinatol. 2014; 34 (1): 43–48. https://doi.org/10.1038/jp.2013.127
48. Radic J. A.E., Vincer M., McNeely P. D. Outcomes of intraventricular hemorrhage and posthemorrhagic hydrocephalus in a population-based cohort of very preterm infants born to residents of Nova Scotia from 1993 to 2010. J. Neurosurg. Pediat. 2015; 15: 580–588. https://doi.org/10.3171/2014.11.PEDS14364
49. Adams-Chapman I., Hansen N. I., Stoll B. J., Higgins R. Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics. 2008; 121: 1167–e1177. https://doi.org/10.1542/peds.2007-0423
50. Sasidharan P., Marquez E., Dizon E., Sridhar C. V. Developmental outcome of infants with severe intracranialintraventricular hemorrhage and hydrocephalus with and without ventriculoperitoneal shunt. Childs Nerv Syst. 1986; 2: 149–152. https://doi.org/10.1007/BF00270845
51. O′Shea T. M., Allred E. N., Kuban K. C., Hirtz D., Specter B., Durfee S., Paneth N., Leviton A.; ELGAN Study Investigators. Intraventricular hemorrhage and developmental outcomes at 24 months of age in extremely preterm infants. J. Child. Neurol. 2012; 27 (1): 22–29. https://doi.org/10.1177/0883073811424462
52. Srinivasakumar P., Limbrick D., Munro R., Mercer D., Rao R., Inder T., Mathur A. Posthemorrhagic ventricular dilatationimpact on early neurodevelopmental outcome. Amer. J. Perinatol. 2013; 30:207–214. https://doi.org/10.1055/s-0032-1323581
53. De Vries L. S., Liem K. D., van Dijk K., Smit B. J., Sie L., Rademaker K. J., Gavilanes A. W.; Dutch Working Group of Neonatal Neurology. Early versus late treatment of posthaemorrhagic ventricular dilatation: results of a retrospective study from five neonatal intensive care units in The Netherlands. Acta Paediat. 2002; 91 (2): 212–217. https://doi.org/10.3171/2011.12.PEDS11136
54. Brouwer A., Groenendaal F., van Haastert I. L., Rademaker K., Hanlo P., De Vries L. Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for posthemorrhagic ventricular dilatation. J. Pediat. 2008; 152: 648–654. https://doi.org/10.1016/j.jpeds.2007.10.005
55. Singh R., Visintainer P. F. Predictive models for severe intraventricular hemorrhage in preterm infants. J. Perinatol. 2014; 34 (10): 802. https://doi.org/10.1038/jp.2014.152
56. Мохов Д. Е., Трегубова Е. С., Кузьмина Ю. О., Потехина Ю. П. Возможности применения остеопатических методов лечения у детей первого года жизни. Вопр. практич. педиатрии. 2018; 13 (5): 91–97. https://doi.org/10.20953/1817-7646-2018-5-91-97
57. Дудин А. В., Туева И. Д., Белаш В. О. Оценка эффективности остеопатических методов коррекции в комплексной терапии псевдобульбарной дизартрии у детей дошкольного возраста. Росийский остеопатический журнал. 2017; 1–2 (36–37): 53–60. https://doi.org/10.32885/2220-0975-2017-1-2-53-60
58. Lanaro D., Ruffini N., Manzotti A., Lista G. Osteopathic manipulative treatment showed reduction of length of stay and costs in preterm infants. A systematic review and meta-analysis. Medicine (Baltimore). 2017. Mar; 96 (12): e6408. https://doi.org/10.1097/md.0000000000006408
59. Cerritelli F., Pizzolorusso G., Ciardelli F., La Mola E., Cozzolino V., Renzetti C. et al. Effect of osteopathic manipulative treatment on length of stay in a population of preterm infants: a randomized controlled trial. BMC Pediat. 2013. Apr 26; 13: 65. https://doi.org/10.1186/1471-2431-13-65
60. Pizzolorusso G., Cerritelli F., Accorsi A., Lucci C., Tubaldi L., Lancellotti J. et al. The effect of optimally timed osteopathic manipulative treatment on length of hospital stay in moderate and late preterm infants: results from a RCT. Evid Based Complement Alternat Med. 2014: 1–10. https://doi.org/10.1155/2014/243539
Рецензия
Для цитирования:
Каримова Л.К. Внутрижелудочковое кровоизлияние — современные представления о патогенезе, факторах риска, диагностике и лечении (обзор литературы). Российский остеопатический журнал. 2020;(1-2):158-167. https://doi.org/10.32885/2220-0975-2020-1-2-158-167
For citation:
Karimova K.L. Intraventricular hemorrhage — modern concepts of pathogenesis, risk factors, diagnostics and treatment (literature review). Russian Osteopathic Journal. 2020;(1-2):158-167. (In Russ.) https://doi.org/10.32885/2220-0975-2020-1-2-158-167