Preview

Российский остеопатический журнал

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Физиологическое обоснование влияния механических воздействий на внутренние органы (обзор литературы)

https://doi.org/10.32885/2220-0975-2025-3-134-150

Аннотация

Актуальность данной статьи обусловлена стремлением расширить представление о влиянии соматической дисфункции (СД) на работу внутренних органов и о возможных механизмах действия остеопатической коррекции. Цель данного обзора — продемонстрировать взаимосвязь изменений в архитектонике соединительной ткани и биомеханических процессов с одной стороны и функционирования внутренних органов и систем и развитием в них патологии с другой. Приведены данные исследований, посвященных механосенситивности клеток различных органов и тканей, обусловленных в первую очередь работой механочувствительных ионных каналов (пьезоканалов). Рассмотрены изменения функционирования и развитие патологических процессов, обусловленных механическими воздействиями на органы пищеварительной, сердечно-сосудистой, мочеполовой, дыхательной и нервной систем. Высказаны предположения о взаимосвязи СД и регуляторных процессов во внутренних органах и нервной системе, которые требуют дальнейшего изучения. Понимание того, как СД влияет на эти процессы, может существенно обогатить наше знание о терапевтическом воздействии остеопатического лечения и других физических методов, а также их потенциале в профилактике различных заболеваний.

Об авторах

А. Ихлеф
Институт междисциплинарной медицины
Россия

Адам Ихлеф, ассистент кафедры превентивной медицины, врач-остеопат

107113, Москва, ул. 3-я Рыбинская, д. 18, стр. 19 



Ю. П. Потехина
Институт остеопатии; Приволжский исследовательский медицинский университет
Россия

Юлия Павловна Потехина, профессор, докт. мед. наук, профессор кафедры нормальной физиологии
им. Н. Ю. Беленкова; заместитель директора по научно-методической работе

Scopus Author ID: 55318321700

191024, Санкт-Петербург, ул. Дегтярная, д. 1, лит. А

603005, Нижний Новгород, пл. Минина и Пожарского, д. 10/1 



Е. В. Сименко
Первый Московский государственный медицинский университет им. И. М. Сеченова (Сеченовский университет)
Россия

Екатерина Владимировна Сименко, врач-невролог

119048, Москва, ул. Трубецкая, д. 8, стр. 2 



Список литературы

1. Потехина Ю. П., Гуричев А. А. Терминология повреждений в остеопатии и в других медицинских дисциплинах. Рос. остеопат. журн. 2021; 2: 116–127. https://doi.org/10.32885/2220-0975-2021-2-116-127

2. Потехина Ю. П., Филатова А. И., Трегубова Е. С., Moхов Д. Е. Механосенситивность различных клеток: возможная роль в регуляции и реализации эффектов физических методов лечения (обзор). Соврем. технол. в мед. 2020; 12 (4): 77–90. https://doi.org/10.17691/stm2020.12.4.10

3. Аптекарь И. А., Костоломова Е. Г., Суховей Ю. Г. Изменение функциональной активности фибробластов в процессе моделирования компрессии, гиперкапнии и гипоксии. Рос. остеопат. журн. 2019; 1–2: 72–84. https://doi.org/10.32885/2220-0975-2019-1-2-72-84

4. O′Connell J. A. Bioelectric responsiveness of fascia: a model for understanding the effects of manipulation. Tech. Orthop. 2003; 18 (1): 67–73. https://doi.org/10.1097/00013611-200303000-00012

5. Findley T., Chaudhry H., Stecco A., Roman M. Fascia research — a narrative review. J. Bodyw Mov. Ther. 2012; 16 (1): 67–75. https://doi.org/10.1016/j.jbmt.2011.09.004

6. Ruggieri D., Labonte D. A theory of physiological similarity in muscle-driven motion. PNAS. 2023. https://doi.org/10.1101/2022.12.13.520057

7. Таренто М. Концепция биотенсегрити и ее использование в остеопатии. Рос. остеопат. журн. 2019; 1–2: 130–140. https://doi.org/10.32885/2220-0975-2019-1-2-130-140

8. Dischiavi S. L., Wright A. A., Hegedus E. J., Bleakley C. M. Biotensegrity and myofascial chains: A global approach to an integrated kinetic chain. Med. Hypoth. 2018; 110: 90–96. https://doi.org/10.1016/j.mehy.2017.11.008

9. Bordoni B., Myers T. A review of the theoretical fascial models: biotensegrity, fascintegrity, and myofascial chains. Cureus. 2020; 12 (2): e7092. https://doi.org/10.7759/cureus.7092

10. Jung E., Ly V., Buderi A., Appleton E. et al. Design and selection of muscle excitation patterns for modeling a lower extremity joint inspired tensegrity // In: 2019 Third IEEE International Conference on Robotic Computing (IRC). Naples, Italy; 2019: 282–287. https://doi.org/10.1109/IRC.2019.00053

11. Ingber D. E. Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. molec. Biol. 2008; 97 (2–3): 163–179. https://doi.org/10.1016/j.pbiomolbio.2008.02.005

12. Tadeo I., Berbegall A. P., Escudero L. M. et al. Biotensegrity of the extracellular matrix: physiology, dynamic mechanical balance, and implications in oncology and mechanotherapy. Front. Oncol. 2014; 4: 39. https://doi.org/10.3389/fonc.2014.00039

13. Buyandelger B., Mansfield C., Knöll R. Mechano-signaling in heart failure. Pfl ug. Arch. 2014; 466 (6): 1093–1099. https://doi.org/10.1007/s00424-014-1468-4

14. Ingber D. E. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell. Sci. 2003; 116 (Pt 7): 1157–1173. https://doi.org/10.1242/jcs.00359

15. Bursa J., Lebis R., Holata J. Tensegrity finite element models of mechanical tests of individual cells. Technol. Hlth Care. 2012; 20 (2): 135–150. https://doi.org/10.3233/THC-2011-0663

16. Ingber D. E., Dike L., Hansen L. et al. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int. Rev. Cytol. 1994; 150: 173–224. https://doi.org/10.1016/s0074-7696(08)61542-9

17. Alcaino C., Farrugia G., Beyder A. Mechanosensitive Piezo channels in the gastrointestinal tract. Curr. Top. Membr. 2017; 79: 219–244. https://doi.org/10.1016/bs.ctm.2016.11.003

18. McMakin C. R., Oschman J. L. Visceral and somatic disorders: tissue softening with frequency-specific microcurrent. J. Altern. Compl. Med. 2013; 19 (2): 170–177. https://doi.org/10.1089/acm.2012.0384

19. Linke W. A., Knöll R. H. Cardiac mechanosensation and clinical implications. Europ. J. Cardiovasc. Med. 2010; 1 (II). https://doi.org/10.5083/ejcm.20424884.05

20. Schleip R., Duerselen L., Vleeming A. et al. Strain hardening of fascia: static stretching of dense fibrous connective tissues can induce a temporary stiffness increase accompanied by enhanced matrix hydration. J. Bodyw. Mov. Ther. 2012; 16 (1): 94–100. https://doi.org//10.1016/j.jbmt.2011.09.003

21. Мохов Д. Е., Потехина Ю. П., Трегубова Е. С., Гуричев А. А. Остеопатия — новое направление медицины (современная концепция остеопатии). Рос. остеопат. журн. 2022; 2: 8–26. https://doi.org/10.32885/2220-0975-2022-2-8-26

22. Jaalouk D., Lammerding J. Mechanotransduction gone awry. Nat. Rev. molec Cell. Biol. 2009; 10: 63–73. https://doi.org/10.1038/nrm2597

23. Ingber D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006; 20 (7): 811–827. https://doi.org/10.1096/fj.05-5424rev

24. Rushdi M., Li K., Yuan Z. et al. Mechanotransduction in T cell development, differentiation, and function. Cells. 2020; 9 (2): 364. https://doi.org/10.3390/cells9020364

25. Romani P., Valcarcel-Jimenez L., Frezza C., Dupont S. Crosstalk between mechanotransduction and metabolism. Nat. Rev. molec. Cell. Biol. 2021; 22 (1): 22–38. https://doi.org/10.1038/s41580-020-00306-w

26. Ingber D. E. Mechanobiology and diseases of mechanotransduction. Ann. Med. 2003; 35 (8): 564–577. https://doi.org/10.1080/07853890310016333

27. Kang N. Mechanotransduction in liver diseases. Seminars. Liver Dis. 2020; 40 (1): 84–90. https://doi.org/10.1055/s-0039-3399502

28. Donnaloja F., Limonta E., Mancosu C. et al. Unravelling the mechanotransduction pathways in Alzheimer′s disease. J. biol. Eng. 2023; 17. https://doi.org/10.1186/s13036-023-00336-w

29. Shutova M. S., Boehncke W-H. Mechanotransduction in skin inflammation. Cells. 2022; 11 (13): 2026. https://doi.org/10.3390/cells11132026

30. Volkers L., Mechioukhi Y., Coste B. Piezo channels: from structure to function. Pfl ug. Arc. — Europ. J. Physiol. 2015; 467 (1): 95–99. https://doi.org/10.1007/s00424-014-1578-z

31. Beech D. J., Xiao B. Piezo channel mechanisms in health and disease. J. Physiol. 2018; 596 (6): 965–967. https://doi.org/10.1113/JP274395

32. Li X., Hu J., Zhao X. et al. Piezo channels in the urinary system. Exp. molec. Med. 2022; 54 (6): 697–710. https://doi.org/10.1038/s12276-022-00777-1

33. Della Pietra A., Mikhailov N., Giniatullin R. The emerging role of mechanosensitive Piezo channels in migraine pain. Int. J. molec. Sci. 2020; 21 (3): 696. https://doi.org/10.3390/ijms21030696

34. Savadipour A., Palmer D., Ely E. V. et al. The role of PIEZO ion channels in the musculoskeletal system. Amer. J. Physiol. Cell. Physiol. 2023; 324 (3): C728–C740. https://doi.org/10.1152/ajpcell.00544.2022

35. Dienes B., Bazsó T., Szabó L., Csernoch L. The role of the Piezo1 mechanosensitive channel in the musculoskeletal system. Int. J. molec. Sci. 2023; 24 (7): 6513. https://doi.org/10.3390/ijms24076513

36. Qin L., He T., Chen S. et al. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Res. 2021; 9 (1): 44. https://doi.org/10.1038/s41413-021-00168-8

37. Stewart T. A., Davis F. M. Formation and function of mammalian epithelia: roles for mechanosensitive PIEZO1 ion channels. Front. Cell. Dev. Biol. 2019; 7: 260. https://doi.org/10.3389/fcell.2019.00260

38. Vandit S., Patel S., Shah J. Piezo ion channels in cardiovascular development. Dev. Dyn. 2022; 251 (2): 276–286. https://doi.org/10.1002/dvdy.401

39. Zhou J., Zhou X. D., Xu R. et al. The degradation of airway epithelial tight junctions in asthma under high airway pressure is probably mediated by Piezo-1. Front. Physiol. 2021; 12: 637790. https://doi.org/10.3389/fphys.2021.637790

40. Kraichely R. E., Farrugia G. Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract. Neurogastroenterol. Motil. 2007 Apr; 19 (4): 245–252. https://doi.org/10.1111/j.1365-2982.2006.00880.x

41. Mostafa R. M., Moustafa Y. M., Hamdy H. Interstitial cells of Cajal, the maestro in health and disease. Wld J. Gastroenterol. 2010; 16 (26): 3239–3248. https://doi.org/10.3748/wjg.v16.i26.3239

42. Du P., O′Grady G., Davidson J. B. et al. Multiscale modeling of gastrointestinal electrophysiology and experimental validation. Crit. Rev. Biomed. Eng. 2010; 38 (3): 225–254. https://doi.org/10.1615/critrevbiomedeng.v38.i3.10

43. Kim B. J., So I., Kim K. W. The relationship of TRP channels to the pacemaker activity of interstitial cells of Cajal in the gastrointestinal tract. J. Smooth. Muscle Res. 2006; 42 (1): 1–7. https://doi.org/10.1540/jsmr.42.1

44. Huizinga J. D., Zarate N., Farrugia G. Physiology, injury, and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology. 2009; 137 (5): 1548–1556. https://doi.org/10.1053/j.gastro.2009.09.023

45. Komuro T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J. Physiol. 2006; 576 (3): 653–658. https://doi.org/10.1113/jphysiol.2006.116624

46. Yang H., Hou C., Xiao W., Qiu Y. The role of mechanosensitive ion channels in the gastrointestinal tract. Front. Physiol. 2022 Aug. 19; 13: 904203. https://doi.org/10.3389/fphys.2022.904203

47. Park K. S., Cho K. B., Hwang I. S. et al. Characterization of smooth muscle, enteric nerve, interstitial cells of Cajal, and fibroblast-like cells in the gastric musculature of patients with diabetes mellitus. Wld J. Gastroenterol. 2016; 22 (46): 10131–10139. https://doi.org/10.3748/wjg.v22.i46.10131

48. McCloskey K. D. Bladder interstitial cells: an updated review of current knowledge. Acta Physiol. (Oxf). 2013; 207 (1): 7–15. https://doi.org/10.1111/apha.12009

49. Mikkelsen H. B. Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions. J. Cell. molec. Med. 2010; 14 (4): 818–832. https://doi.org/10.1111/j.1582-4934.2010.01025.x

50. Moraveji S., Bashashati M., Elhanafi S. et al. Depleted interstitial cells of Cajal and fi brosis in the pylorus: novel features of gastroparesis. Neurogastroenterol Motil. 2016; 28 (7): 1048–1054. https://doi.org/10.1111/nmo.12806

51. Lou Z., Li J. S. Interstitial cells of Cajal in abdominal sepsis and hypertension-induced ileus in rats. Europ. Surg. Res. 2009; 43 (1): 47–52. https://doi.org/10.1159/000218102

52. Novák J., Jačisko J., Štveráková T. et al. The signifi cance of intra-abdominal pressure on postural stabilization: A low back pain case report. Slovak J. Sport Sci. 2022; 7 (2): 3–18. https://doi.org/10.24040/sjss.2021.7.2.3-18

53. Andersson G. B., Ortengren R., Nachemson A. Intradiskal pressure, intra-abdominal pressure and myoelectric back muscle activity related to posture and loading. Clin. Orthop. Relat. Res. 1977; (129): 156–164. https://doi.org/10.1097/00003086-197711000-00018

54. Morisawa T., Takahashi T., Nishi S. The effect of a physiotherapy intervention on intestinal motility. J. Phys. Ther. Sci. 2015; 27 (1): 165–168. https://doi.org/10.1589/jpts.27.165

55. Jung M. S., Han M. H., Park T. I., Jung M. K. Relationship between gallstones and interstitial cells of Cajal in the gallbladder. Medicine (Baltimore). 2022; 101 (28): e29851. https://doi.org/10.1097/MD.0000000000029851

56. Ding F., Hu Q., Wang Y. et al. Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review). Int. J. molec. Med. 2023; 51 (4): 33. https://doi.org/10.3892/ijmm.2023.5236

57. Franks I. Loss of interstitial Cajal-like cells in the gallbladder might contribute to gallstone formation. Nat. Rev. Gastroenterol Hepatol. 2012; 9 (12): 689. https://doi.org/10.1038/nrgastro.2012.224

58. Ding R., Wei J., Xu J. Gallbladder interstitial Cajal-like cells and gallbladder contractility in patients with cholelithiasis: a prospective study. Folia Histochem. Cytobiol. 2019; 57 (2): 94–100. https://doi.org/10.5603/FHC.a2019.0011

59. Treichel A. J., Farrugia G., Beyder A. The touchy business of gastrointestinal (GI) mechanosensitivity. Brain Res. 2018; 1693 (Pt B): 197–200. https://doi.org/10.1016/j.brainres.2018.02.039

60. Wang F., Knutson K., Alcaino C. et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J. Physiol. 2017; 595 (1): 79–91. https://doi.org/10.1113/JP272718

61. Dickson I. Gut mechanosensors: enterochromaffin cells feel the force via PIEZO2. Nat. Rev. Gastroenterol. Hepatol. 2018; 15 (9): 519. https://doi.org/10.1038/s41575-018-0059-9

62. Alcaino C., Knutson K. R., Treichel A. J. et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc. nat. Acad. Sci. USA. 2018; 115 (32): E7632–E7641. https://doi.org/10.1073/pnas.1804938115

63. Chin A., Svejda B., Gustafsson B. I. et al. The role of mechanical forces and adenosine in the regulation of intestinal enterochromaffin cell serotonin secretion. Amer. J. Physiol. Gastroint. Liver Physiol. 2012; 302 (3): G397–G405. https://doi.org/10.1152/ajpgi.00087.2011

64. Xu Y., Xiong Y., Liu Y. et al. Activation of goblet cell Piezo1 alleviates mucus barrier damage in mice exposed to WAS by inhibiting H3K9me3 modification. Cell Biosci. 2023; 13: 7. https://doi.org/10.1186/s13578-023-00952-5

65. Xu Y., Bai T., Xiong Y. et al. Mechanical stimulation activates Piezo1 to promote mucin2 expression in goblet cells. J. Gastroenterol. Hepatol. 2021; 36 (11): 3127–3139. https://doi.org/10.1111/jgh.15596

66. Mostafa R. M., Moustafa Y. M., Hamdy H. Interstitial cells of Cajal, the maestro in health and disease. Wld J. Gastroenterol. 2010; 16 (26): 3239–3248. https://doi.org/10.3748/wjg.v16.i26.3239

67. Hashitani H., Lang R. J. Functions of ICC-like cells in the urinary tract and male genital organs. J. Cell. molec. Med. 2010; 14 (6A): 1199–1211. https://doi.org/10.1111/j.1582-4934.2010.01043.x

68. Liu Q., Sun B., Zhao J. et al. Increased Piezo1 channel activity in interstitial Cajal-like cells induces bladder hyperactivity by functionally interacting with NCX1 in rats with cyclophosphamide-induced cystitis. Exp. molec. Med. 2018; 50: 1–16. https://doi.org/10.1038/s12276-018-0088-z

69. David G., Hirst S., Suzuki H. Involvement of interstitial cells of Cajal in the control of smooth muscle excitability. J. Physiol. 2006; 576 (3): 651–721. https://doi.org/10.1113/jphysiol.2006.121178

70. Baah-Dwomoh A., McGuire J., Tan T., De Vita R. Mechanical properties of female reproductive organs and supporting connective tissues: A review of the current state of knowledge. Appl. Mech. Rev. 2016; 68 (6): 060801. https://doi.org/10.1115/1.4034442

71. Liu J., Wang C., Wang W. et al. Activation of Piezo1 or TRPV2 channels inhibits human ureteral contractions via NO release from the mucosa. Front. Pharmacol. 2024; 15: 1410565. https://doi.org/10.3389/fphar.2024.1410565

72. Alberts B., Johnson A., Lewis J. et al. Molecular Biology of the Cell (4th ed.). New York: Garland Science; 2002. Blood vessels and endothelial cells. https://www.ncbi.nlm.nih.gov/books/NBK26848/

73. Johannes A. E., Stephan N. The extracellular matrix of blood vessels. Curr. Pharm. Des. 2009; 15 (12): 1385–1400. https://doi.org/10.2174/138161209787846757

74. Taylor A. M., Bordoni B. Histology, blood vascular system. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK553217/

75. Bertrand C., Patrick D. PIEZO ion channels in cardiovascular functions and diseases. Circ. Res. 2024; 134 (5): 572–591. https://doi.org/10.1161/CIRCRESAHA.123.322798

76. Ayon R. J., Kuppusamy M., Ceolotto G., Chen Y. L. Calcium regulation and mechano-transduction in vascular diseases: obligatory role of transient receptor potential and Piezo channels. Front. Physiol. 2024; 15. https://doi.org/10.3389/fphys.2024.1375432

77. Wang J., Xu J., Liu T. et al. Biomechanics-mediated endocytosis in atherosclerosis. Front. Cardiovasc. Med. 2024; 11: 1337679. https://doi.org/10.3389/fcvm.2024.1337679

78. Buja L. M., Butany J. Cardiovascular Pathology (5th ed.). Elsevier; 2022. https://doi.org/10.1016/C2019-0-04234-3

79. Rene R., Carmela T. Structure and anatomy of the human pericardium. Prog. Cardiovasc. Dis. 2017; 59 (4): 327–340. https://doi.org/10.1016/j.pcad.2016.12.010

80. Завьялов А. И., Завьялов Д. А., Завьялов А. А. Сердце — пятикамерная система. Теория и практика физической культуры. 2005; 6: 23–26.

81. Pesce M., Duda G. N., Forte G. et al. Cardiac fibroblasts and mechanosensation in heart development, health, and disease. Nat. Rev. Cardiol. 2023; 20 (5): 309–324. https://doi.org/10.1038/s41569-022-00799-2

82. Шевченко Ю. Л. Иммобилизирующий интерстициальный фиброз сердца. Вестн. НМХЦ им. Н. И. Пирогова. 2022; 17 (2): 4–10. https://doi.org/10.25881/20728255_2022_17_2_4

83. Gedney J. R., Mattia V., Figueroa M. et al. Biomechanical dysregulation of SGK-1 dependent aortic pathologic markers in hypertension. Front. Cardiovasc. Med. 2024; 11: 1359734. https://doi.org/10.3389/fcvm.2024.1359734

84. Renò F., Grazianetti P., Stella M. et al. Release and activation of matrix metalloproteinase-9 during in vitro mechanical compression in hypertrophic scars. Arch. Dermatol. 2002; 138 (4): 475–478. https://doi.org/10.1001/archderm.138.4.475

85. Parker K. K., Ingber D. E. Extracellular matrix, mechanotransduction, and structural hierarchies in heart tissue engineering. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2007; 362 (1484): 1267–1279. https://doi.org/10.1098/rstb.2007.2114

86. Lab M. J. Mechanosensitivity as an integrative system in the heart: an audit. Prog. Biophys. molec. Biol. 1999; 71 (1): 7–27. https://doi.org/10.1016/S0079-6107 (98)00035-2

87. Buyandelger B., Mansfi eld C., Knöll R. Mechano-signaling in heart failure. Pflug. Arch. 2014; 466 (6): 1093–1099. https://doi.org/10.1007/s00424-014-1468-4

88. Xiong H., Yang J., Guo J. et al. Mechanosensitive Piezo channels mediate the physiological and pathophysiological changes in the respiratory system. Resp. Res. 2022; 23: 196. https://doi.org/10.1186/s12931-022-02122-6

89. Zheng M., Borkar N. A., Yao Y. et al. Mechanosensitive channels in lung disease. Front. Physiol. 2023; 14: 1302631. https://doi.org/10.3389/fphys.2023.1302631

90. Button B., Okada S. F., Frederick C. B. et al. Mechanosensitive ATP release maintains proper mucus hydration of airways. Sci. Signal. 2013; 6 (279): ra46. https://doi.org/10.1126/scisignal.2003755

91. Fang X. Z., Li M., Wang Y. X. et al. Mechanosensitive ion channel Piezo1 mediates mechanical ventilation-exacerbated ARDS-associated pulmonary fi brosis. J. Adv. Res. 2023; 53: 175–186. https://doi.org/10.1016/j.jare.2022.12.006

92. Schittny J. C., Miserocchi G., Sparrow M. Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants. Amer. J. Resp. Cell. molec. Biol. 2000; 23 (1): 11–18. https://doi.org/10.1165/ajrcmb.23.1.3926

93. Janssen L. J., Daniel E. E., Rodger I. W. Airway smooth muscle cells: structure and function. Asthma (3rd ed.). Basic Mechanisms and Clinical Management. 1998: 89–112. https://doi.org/10.1016/B978-012079027-2/50087-3

94. Franze K. The mechanical control of nervous system development. Development. 2013; 140 (15): 3069–3077. https://doi.org/10.1242/dev.079145

95. Franze K., Janmey P. A., Guck J. Mechanics in neuronal development and repair. Ann. Rev. Biomed. Eng. 2013; 15: 227–251. https://doi.org/10.1146/annurev-bioeng-071811-150045

96. Mayer M., Depken M., Bois J. S. et al. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature. 2010; 467 (7315): 617–621. https://doi.org/10.1038/nature09376

97. Xu G., Bayly P. V., Taber L. A. Residual stress in the adult mouse brain. Biomech. Model Mechanobiol. 2009; 8 (4): 253–262. https://doi.org/10.1007/s10237-008-0131-4

98. Chang Y. J., Tsai C. J., Tseng F. G. et al. Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior. Nanomedicine. 2013; 9 (3): 345–355. https://doi.org/10.1016/j.nano.2012.07.008

99. Siechen S., Yang S., Chiba A., Saif T. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. nat. Acad. Sci. USA. 2009; 106 (31): 12611–12616. https://doi.org/10.1073/pnas.0901867106

100. Xu G., Knutsen A. K., Dikranian K. et al. Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 2010; 132 (7): 071013. https://doi.org/10.1115/1.4001683

101. Suter D. M., Miller K. E. The emerging role of forces in axonal elongation. Prog. Neurobiol. 2011; 94 (2): 91–101. https://doi.org/10.1016/j.pneurobio.2011.04.002

102. Ayali A. The function of mechanical tension in neuronal and network development. Integr. Biol. (Camb). 2010; 2 (4): 178–182. https://doi.org/10.1039/b927402b

103. Pfister B. J., Iwata A., Meaney D. F., Smith D. H. Extreme stretch growth of integrated axons. J. Neurosci. 2004; 24 (36): 7978–7983. https://doi.org/10.1523/JNEUROSCI.1974-04.2004

104. Chang Y. J., Tsai C. J., Tseng F. G. et al. Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior. Nanomedicine (Lond). 2013; 9 (3): 345–355. https://doi.org/10.1016/j.nano.2012.07.008

105. Franze K., Gerdelmann J., Weick M. et al. Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys. J. 2009; 97 (7): 1883–1890. https://doi.org/10.1016/j.bpj.2009.07.033

106. Van Essen D. C. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 1997; 385 (6614): 313–318. https://doi.org/10.1038/385313a0

107. Christ A. F., Franze K., Gautier H. et al. Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. J. Biomech. 2010; 43 (15): 2986–2992. https://doi.org/10.1016/j.jbiomech.2010.07.002

108. Sack I., Beierbach B., Wuerfel J. et al. The impact of aging and gender on brain viscoelasticity. Neuroimage. 2009; 46 (3): 652–657. https://doi.org/10.1016/j.neuroimage.2009.02.040

109. Lu Y. B., Iandiev I., Hollborn M. et al. Reactive glial cells: increased stiffness correlates with increased intermediate fi lament expression. FASEB J. 2011; 25 (2): 624–631. https://doi.org/10.1096/fj.10-163790

110. Cai L., Zhang L., Dong J., Wang S. Photocured biodegradable polymer substrates of varying stiffness and microgroove dimensions for promoting nerve cell guidance and differentiation. Langmuir. 2012; 28 (34): 12557–12568. https://doi.org/10.1021/la302868q

111. Jagielska A., Norman A. L., Whyte G. et al. Mechanical environment modulates biological properties of oligodendrocyte progenitor cells. Stem. Cells Dev. 2012; 21 (16): 2905–2914. https://doi.org/10.1089/scd.2012.0189

112. Schleip R. Fascial plasticity — a new neurobiological explanation: part 1. J. Bodyw. Mov. Ther. 2003; 7 (1): 11–19. https://doi.org/10.1016/S1360-8592 (02)00067-0

113. Tapadia M., Mozaffar T., Gupta R. Compressive neuropathies of the upper extremity: update on pathophysiology, classification, and electrodiagnostic findings. J. Hand. Surg. Amer. 2010; 35 (4): 668–677. https://doi.org/10.1016/j.jhsa.2010.01.007

114. Gupta R., Rummler L. S., Palispis W. et al. Local down-regulation of myelin-associated glycoprotein permits axonal sprouting with chronic nerve compression injury. Exp. Neurol. 2006; 200 (2): 418–429. https://doi.org/10.1016/j.expneurol.2006.02.134

115. Mackinnon S. E. Pathophysiology of nerve compression. Hand. Clin. 2002; 18 (2): 231–241. https://doi.org/10.1016/s0749-0712 (01)00012-9

116. Coste B., Mathur J., Schmidt M. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010; 330 (6000): 55–60. https://doi.org/10.1126/science.1193270

117. Rempel D., Dahlin L., Lundborg G. Pathophysiology of nerve compression syndromes: response of peripheral nerves to loading. J. Bone Joint. Surg. Amer. 1999; 81 (11): 1600–1610. https://doi.org/10.2106/00004623-199911000-00013

118. Yayama T., Kobayashi S., Nakanishi Y. et al. Effects of graded mechanical compression of rabbit sciatic nerve on nerve blood fl ow and electrophysiological properties. J. clin. Neurosci. 2010; 17 (4): 501–505. https://doi.org/10.1016/j.jocn.2009.07.110

119. Gelberman R. H., Szabo R. M., Williamson R. V. et al. Tissue pressure threshold for peripheral nerve viability. Clin. Orthop. Relat. Res. 1983; 178: 285–291.

120. Rydevik B., Lundborg G., Bagge U. Effects of graded compression on intraneural blood flow: an in vivo study on rabbit tibial nerve. J. Hand. Surg. Amer. 1981; 6 (1): 3–12. https://doi.org/10.1016/s0363-5023 (81)80003-2

121. Powell H. C., Myers R. R. Pathology of experimental nerve compression. Lab. Invest. 1986; 55 (1): 91–100.

122. Luchetti R., Amadio P. C. The pathophysiology of median nerve compression. Carpal yunnel syndrome. Springer. 2007; 45–57. https://doi.org/10.1007/978-3-540-49008-1_5

123. Topp K. S., Boyd B. S. Structure and biomechanics of peripheral nerves: nerve responses to physical stresses and implications for physical therapist practice. Phys. Ther. 2006; 86 (1): 92–109. https://doi.org/10.1093/ptj/86.1.92

124. Câmara R., Griessenauer C. J. Anatomy of the vagus nerve. Nerves and Nerve Injuries. Acad. Press; 2015: 385–397. https://doi.org/10.1016/B978-0-12-410390-0.00028-7

125. Dahlin L. B. Aspects on pathophysiology of nerve entrapments and nerve compression injuries. Neurosurg. Clin. N. Amer. 1991; 2 (1): 21–29.

126. Hollis H. K., Wilfrid J., Michael M. P. The science and clinical application of manual therapy (1st ed.). Springer; 2011. https://doi.org/10.1016/j.math.2011.06.001

127. Sato A. Somatovisceral Reflexes. J. Manipulat. Physiol. Ther. 1995; 18 (9): 597–602.

128. Sato A., Schmidt R. F. The modulation of visceral functions by somatic afferent activity. Jpn. J. Physiol. 1987; 37 (1): 1–17. https://doi.org/10.2170/jjphysiol.37.1

129. Rome P. L. Neurovertebral influence on visceral and ANS function: some of the evidence to date–part II–somatovisceral. Chiropr. J. Aust. 2010; 40: 9.

130. Roberts A., Harris K., Outen B. et al. Osteopathic manipulative medicine: a brief review of the hands-on treatment approaches and their therapeutic uses. Medicines. 2022; 9 (5): 33. https://doi.org/10.3390/medicines9050033

131. Moustafa I. M., Shousha T., Arumugam A., Harrison D. E. Is thoracic kyphosis relevant to pain, autonomic nervous system function, disability, and cervical sensorimotor control in patients with chronic nonspecifi c neck pain? J. clin. Med. 2023; 12 (11): 3707. https://doi.org/10.3390/jcm12113707

132. Moustafa I. M., Youssef A., Ahbouch A. et al. Is forward head posture relevant to autonomic nervous system function and cervical sensorimotor control? Cross-sectional study. Gait. Posture. 2020; 77: 29–35. https://doi.org/10.1016/j.gaitpost.2020.01.004


Рецензия

Для цитирования:


Ихлеф А., Потехина Ю.П., Сименко Е.В. Физиологическое обоснование влияния механических воздействий на внутренние органы (обзор литературы). Российский остеопатический журнал. 2025;(3):134-150. https://doi.org/10.32885/2220-0975-2025-3-134-150

For citation:


Ikhlef A., Potekhina Yu.P., Simenko E.V. Physiological substantiation of the effect of mechanical impact on internal organs (literature review). Russian Osteopathic Journal. 2025;(3):134-150. (In Russ.) https://doi.org/10.32885/2220-0975-2025-3-134-150

Просмотров: 13


ISSN 2220-0975 (Print)
ISSN 2949-3064 (Online)