Preview

Russian Osteopathic Journal

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Diaphragm functions and their disorder during artificial ventilation of the lungs (literature review)

https://doi.org/10.32885/2220-0975-2025-1-125-140

Abstract

The aim of this review was to systematize the functions of the diaphragm and their disorders occurring during artificial lung ventilation, as well as to evaluate the possibilities of their osteopathic correction. The diaphragm is not only the main respiratory muscle, but also takes part in the functioning of cardiovascular, digestive and other systems of the body, including the central nervous system. Consequently, dysfunctions of the diaphragm negatively affect the condition of the entire body. They can be formed for various reasons, including in patients who are on artificial lung ventilation for a long time. Instrumental diagnosis of diaphragm dysfunction has not been developed, but osteopathic physicians have techniques for both diagnosis and correction of diaphragm dysfunction. There are relatively few publications proving the positive effect of osteopathic correction on external respiratory function. Osteopathic treatment of the diaphragm has potential benefit in reducing the time patients spend on ventilator and their rehabilitation afterwards. No such studies were found in the available literature, but they are highly relevant and may open new perspectives for the application of osteopathic correction.

About the Authors

K. M. Tolmachev
City Clinical Hospital named after S.S. Yudin
Russian Federation

Konstantin М. Tolmachev, transfusiologist

bld. 4 Kolomenskiy proezd, Moscow, 115446

 



Yu. P. Potekhina
Institute of Osteopathy; Privolzhsky Research Medical University
Russian Federation

Yulia P. Potekhina, Dr. Sci. (Med.), Professor, Privolzhsky Research Medical University, Professor at the N. Yu. Belenkov Department of Normal Physiology; Institute of Osteopathy, Deputy Director for Scientific and Methodological Work

bld. 1 lit. A ul. Degtyarnaya, Saint-Petersburg, 191024,

bld. 10/1 Minin and Pozharsky sq., Nizhny Novgorod, 603005

Scopus Author ID: 55318321700 



References

1. Chursin V. V. Artifi cial ventilation of lungs: Training manual. Almaty; 2008 (in russ.).

2. Zilberberg M. D., Marjolein W., Pirone J. R., Shorr A. F. Growth in adult prolonged acute mechanical ventilation: implications for healthcare delivery. Crit. Care Med. 2008; 36 (5): 1451–1455. https://doi.org/10.1097/CCM.0b013e3181691a49

3. Matiushkov N. S., Tyurin I. N., Avdeikin S. N., Boyarkov A. V. et al. Respiratory support in COVID-19 patients in Kommunarka hospital: A single-centered, retrospective study. Bull. crit. Care. 2021; 3: 47–60. https://doi.org/10.21320/1818-474X-2021-3-47-60 (in russ.).

4. Villalba D., Gil Rossetti G., Scrigna M., Collins J. et al. Prevalence of and risk factors for mechanical ventilation reinstitution in patients weaned from prolonged mechanical ventilation. Resp. Care. 2020; 65 (2): 210–216. https://doi.org/10.4187/respcare.06807

5. Rothaar R. C., Epstein S. K. Extubation failure: magnitude of the problem, impact on outcomes, and prevention. Curr. Opin. Crit. Care. 2003; 9 (1): 59–66. https://doi.org/10.1097/00075198-200302000-00011

6. Epstein S. K. Weaning from ventilatory support. Curr. Opin. crit. Care. 2009; 15 (1): 36–43. https://doi.org/10.1097/MCC.0b013e3283220e07

7. Funk G. C., Anders S., Breyer M. K., Burghuber O. C. et al. Incidence and outcome of weaning from mechanical ventilation according to new categories. Europ. Resp. J. 2010; 35: 88–94. https://doi.org/10.1183/09031936.00056909

8. Jeong B. H., Ko M. G., Nam J., Yoo H. et al. Differences in clinical outcomes according to weaning classifi cations in medical intensive care units. PLOS ONE. 2015; 10 (4): e0122810. https://doi.org/10.1371/journal.pone.0122810

9. Roberts H. C. Imaging the diaphragm. Thorac. Surg. Clin. 2009; 19 (4): 431–450. PMID: 20112626. https://doi.org/10.1016/j.thorsurg.2009.08.008

10. Downey R. Anatomy of the Normal Diaphragm. Thorac. Surg. Clin. 2011; 21: 273–279. https://doi.org/10.1016/j.thorsurg.2011.01.001

11. Greenman Ph.E. Principles of manual medicine. Lippincott Williams & Wilkins; 2003: 613.

12. Bordoni B., Zanier E. Anatomic connections of the diaphragm: infl uence of respiration on the body system. J. Multidiscip. Hlthe. 2013; 6: 281–291. https://doi.org/10.2147/JMDH.S45443

13. Sagrillo L., Frigo L. The respiratory diaphragm in osteopathic vision: A literature review. Manual Ther. Posturol. Rehab. J. 2020; 414 (14): 1–6. https://doi.org/10.17784/mtprehabjournal.2016.14.0414.

14. Bordoni B., Simonelli M. The awareness of the fascial system. Cureus. 2018; 10 (10): e3397. https://doi.org/10.7759/cureus.3397

15. Bordoni B. The fi ve diaphragms in osteopathic manipulative medicine: myofascial relationships, part 1. Cureus. 2020; 12 (4): e7794. https://doi.org/10.7759/cureus.7794

16. Borzykh A. A., Vinogradova O. L., Tarasova O. S. Diaphragm: relationship between the regulation of blood supply and the characteristics of the contractile function. Vestn. MGU (seriya 16 «Biologiya»). 2020; 75 (2): 55–64 (in russ.).

17. Loukas M., Du Plessis M., Louis R. G. Jr., Tubbs R. S. et al. The subdiaphragmatic part of the phrenic nerve — morphometry and connections to autonomic ganglia. Clin. Anat. 2016; 29 (1): 120–128. https://doi.org/10.1002/ca.22652

18. Bordoni B., Zanier E. The continuity of the body: hypothesis of treatment of the fi ve diaphragms. J. Altern. Compl. Med. 2015; 21 (4): 237–242. https://doi.org/10.1089/acm.2013.0211

19. Shmidt R., Tevs G. (eds.) Human Physiology (in 3 vols.). Vol. 2. M.: MIR; 1996: 313 (in russ.).

20. Fogarty M. J., Sieck G. C. Evolution and functional differentiation of the diaphragm muscle of mammals. Compr. Physiol. 2019; 9 (2): 715–766. https://doi.org/10.1002/cphy.c180012

21. Byuske L. Muscle circuits. Vol. 2. Lordoses, kyphoses, scolioses and deformities of the thorax. M.–Ivanovo: MIK; 2011 (in russ.).

22. Bordoni B., Marelli F., Morabito B., Sacconi B. et al. Low-back pain and gastroesophageal refl ux in patients with COPD: The disease in the breath. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 325–334.

23. Zavyalov A. I., Zavyalov D. A., Zavyalov A. A. The heart is a fi ve-chamber system. Teoriya i praktika fiz. kultury. 2005; 6: 23–26 (in russ.).

24. Takizawa K., Matsumae M., Sunohara S., Yatsushiro S. et al. Characterization of cardiac- and respiratory-driven cerebrospinal fl uid motion based on asynchronous phase-contrast magnetic resonance imaging in volunteers. Fluids Barriers CNS. 2017; 14: 25.

25. Wszedybyl-Winklewska M., Wolf J., Swierblewska E., Kunicka К. et al. Increased inspiratory resistance affects the dynamic relationship between blood pressure changes and subarachnoid space width oscillations. PLoS One. 2017; 12: 179503. https://doi.org/10.1371/journal.pone.0179503

26. Whedon J. M., Glassey D. Cerebrospinal fl uid stasis and its clinical signifi cance. Altern. Ther. Hlth Med. 2009; 15: 54–60.

27. Zelano C., Jiang H., Zhou G., Arora N. et al. Nasal respiration entrains human limbic oscillations and modulates cognitive function. J. Neurosci. 2016; 36: 12448–12467.

28. Heck D. H., McAfee S. S., Liu Y., Babajani-Feremi А. et al. Breathing as a fundamental rhythm of brain function. Front Neural. Circ. 2017; 10: 115. https://doi.org/10.3389/fncir.2016.00115

29. Herrero J. L., Khuvis S., Yeagle E., Cerf M. et al. Breathing above the brain stem: volitional control and attentional modulation in humans. J. Neurophysiol. 2018; 119: 145–159.

30. Varga S., Heck D. H. Rhythms of the body, rhythms of the brain: respiration, neural oscillations, and embodied cognition. Consc. Cogn. 2017; 56: 77–90.

31. Biskamp J., Bartos M., Sauer J. F. Organization of prefrontal network activity by respiration-related oscillations. Sci. Rep. 2017; 7: 45508.

32. Tsanov M. Speed and oscillations medial septum integration of attention and navigation. Front Syst. Neurosci. 2017; 11: 67.

33. Bordoni B., Marelli F., Morabito B., Sacconi B. Manual evaluation of the diaphragm muscle. Int. J. Chron. Obstruct. Pulmon. Dis. 2016; 11: 1949–1956. https://doi.org/10.2147/COPD.S111634

34. Bordoni B., Purgol S., Bizzarri A., Modica M. et al. The Infl uence of Breathing on the Central Nervous System. Cureus. 2018; 10 (6): e2724. https://doi.org/10.7759/cureus.2724

35. Goryachev A. S., Savin I. A. Fundamentals of ventilation. M.: MD; 2014 (in russ.).

36. Curley G. F., Laffey J., Zhang H. Biotrauma and ventilator-induced lung injury: linical implications. Chest. 2016; 150 (5): 1109–1117. https://doi.org/10.1016/j.chest.2016.07.019

37. Ponukalina E. V., Polutova N. V., Chesnokova N. P., Bizenkova M. N. Lecture 2: the importance of the lungs in providing external respiration and non-respiratory functions: Nauch. obozrenie. Med. nauki. 2017; 2: 34-35 (in russ.).

38. Evlakhov V. I., Poyasov I. Z. Venous return and pulmonary hemodynamics during artifi cial ventilation with positive endexpiratory pressure. Med. akad. zhurn. 2019; 19 (3): 11–20. https://doi.org/10.17816/MAJ19311-20 (in russ.).

39. Katira D. H. Ventilator-induced lung injury: Classic and novel concepts. Resp. Care. 2019; 64 (6): 629-637. https://doi.org/10.4187/respcare.07055

40. Кассиль В. Л., Выжигина М. А., Лескин Г. С. Искусственная и вспомогательная вентиляция легких: Рук. для врачей. М.: Медицина; 2004. [Kassil V. L., Vyzhigina M.A, Leskin G. S. Artifi cial and assisted ventilation: Handbook for physicians. M.: Meditsina; 2004 (in russ.).

41. Levine S., Nguyen T., Taylor N., Friscia M. E. et al. Rapid disuse atrophy of diaphragm fi bers in mechanically ventilated humans. New Engl. J. Med. 2008; 358 (13): 1327–1335. https://doi.org/10.1056/NEJMoa070447

42. Welvaart W. N., Paul M. A., Stienen G. J., van Hees H. W. et al. Selective diaphragm muscle weakness after contractile inactivity during thoracic surgery. Ann. Surg. 2011; 254 (6): 1044–1049. https://doi.org/10.1097/SLA.0b013e318232e75b

43. Vassilakopoulos T., Petrof B. J. Ventilator-induced diaphragmatic dysfunction. Amer. J. Resp. Crit. Care Med. 2004; 169 (3): 336–341. https://doi.org/10.1164/rccm.200304-489CP

44. Boon A. J., Meiling J. B., Luetmer M. T., Klein C. J., et al. Paradoxical thinning of the diaphragm on ultrasound is a risk factor for requiring non-invasive ventilation in patients with neuromuscular diaphragmatic dysfunction. Muscle Nerve. 2024; 70 (3): 352–359. https://doi.org/10.1002/mus.28194

45. Jung B., Moury P. H., Mahul M., de Jong A. et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intens. Care Med. 2016; 42 (5): 853–861. https://doi.org/10.1007/s00134-015-4125-2

46. Davis R. T., Bruells C. S., Stabley J. N., McCullough D. J. et al. Mechanical ventilation reduces rat diaphragm blood fl ow and impairs oxygen delivery and uptake. Crit. Care Med. 2012; 40 (10): 2858–2866. https://doi.org/10.1097/CCM.0b013e31825b933a

47. Powers S. K., Smuder A. J., Criswell D. S. Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid. Redox. Signal. 2011; 15 (9): 2519–2528. https://doi.org/10.1089/ars.2011.3973

48. Hermans G., van den Berghe G. Clinical review: Intensive care unit asquired weakness. Crit. Care. 2015; 19 (1): 274. https://doi.org/10.1186/s13054-015-0993-7

49. Powers S. K., Wiggs M. P., Sollanek K. J., Smuder A. J. Ventilator-induced diaphragm dysfunction: cause and effect. Amer. J. Physiol. Regul. Integr. Comp. Physiol. 2013; 305 (5): R464–R477. https://doi.org/10.1152/ajpregu.00231.2013

50. Belyaev A. F., Kharkovskaya T. S., Fotina O. N., Yurchenko A. A. Effect of osteopathic correction on the function of external respiration in patients with COVID-19 coronavirus pneumonia. Russ. Osteopath. J. 2021; 4: 8–17. https://doi.org/10.32885/2220-0975-2021-4-8-17 (in russ.).

51. Doorduin J., van Hees H. W., van der Hoeven J. G., Heunks L. M. Monitoring of the respiratory muscles in the critically ill. Amer. J. Resp. crit. Care Med. 2013; 187 (1): 20–27. https://doi.org/10.1164/rccm.201206-1117CP

52. Rafferty G. F., Greenough A., Manczur T., Polkey M. I. et al. Magnetic phrenic nerve stimulation to assess diaphragm function in children following liver transplantation. Pediat. crit. Care Med. 2001; 2 (2): 122–126. https://doi.org/10.1097/00130478-200104000-00005

53. Yonis H., Crognier I., Conil J-M., Serres I. et al. Patient-ventilator synchrony in Neurally Ajusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV): A prospective observational study. BMC Anesthesiol. 2015; 15: 117. https://doi.org/10.1186/s12871-015-0091-z

54. DiNino E., Gartman E. J., Sethi J. M., McCool E. D. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax. 2014; 69 (5): 423–427. https://doi.org/10.1136/thoraxjnl-2013-204111

55. Courtney R. The functions of breathing and its dysfunctions and their relationship to breathing therapy. Int. J. Osteopath. Med. 2009; 12 (3): 78–85. https://doi.org/10.1016/j.ijosm.2009.04.002

56. Hruby R. J. The rib cage. In, Foundations for osteopathic medicine; Ward RC (2nd ed.). London, Lippincott Williams & Wilkins; 2003: 719–720.

57. Mokhov D. E., Aptekar I. A., Belash V. O., Litvinov I. A., Mogelnitskiy A. S., Potekhina Yu. P., Tarasov N. A., Tarasova V. V., Tregubova E. S., Ustinov A. V. Fundamentals of osteopathy: A textbook / D. E. Mokhov (eds.) M.: GEOTAR-Media; 2020 (in russ.).

58. Zavertailo L. L., Ermakov E. A., Semenkova G. V., Malkov O. A. et al. Termination of prolonged mechanical ventilation (literature review). Intens. Care. 2007; 3: 66–79 (in russ.).

59. Jones C., Skirrow P., Griffi ths R., Humphris G. et al. Rehabilitation after critical illness: A randomized, controlled trial. Crit. Care med. 2003; 31: 2456–2461. https://doi.org/10.1097/01.CCM.0000089938.56725.33

60. Chuang M. L., Chou Y. L., Lee C. Y., Huang S. F. Instantaneous responses the hight-frequency chest wall oscillation in patients with acute pneumonie respiratory failure receiving mechanical ventilation: A randomized controlled study. Medicine (Baltimore). 2017; 96 (9): e5912. https://doi.org/10.1097/MD.0000000000005912

61. Onders R., Markovitz A., Ho V. P., Hardacre J. et al. Completed FDA feasibility trial of surgical placed temporary diaphragm pacing electrodes: A promising option to prevent and treat respiratory failure. Amer. J. Surg. 2018; 215 (3): 518–521. https://doi.org/j.amsurg.2017.10.054

62. Paromov K. V., Svirskiy D. A., Kirov M.Yu. Treatment option for diaphragm dysfunction after cardiac surgery: A review and a clinical case. Bull. crit. Care. 2022; 3: 57–68. https://doi.org/10.21320/1818-474X-2022-3-57-68 (in russ.).

63. Hollie B. Osteopathic management of patients with breathing dysfunction: An exploratory study. Osteopath. Res. Web. https://www.osteopathicresearch.org/s/orw/item/1796

64. Auer-Rizzi K. Breathing and the Center of Command — the infl uence of respiration on the Central Nervous System. Osteopath. Res. Web.

65. Rocha T., Souza H., Brandão D. C., Rattes C. et al. The Manual Diaphragm Release Technique improves diaphragmatic mobility, inspiratory capacity and exercise capacity in people with chronic obstructive pulmonary disease: A randomised trial. J. Physiother. 2015; 61 (4): 182–189. https://doi.org/10.1016/j.jphys.2015.08.009

66. González-Álvarez F., Valenza M., Cabrera-Martos I., Torres Sánchez I. et al. Effects of a diaphragm stretching technique on pulmonary function in healthy participants: A randomized-controlled trial. Int. J. Osteopath. Med. 2014; 18 (1): 5–12. https://doi.org/10.1016/j.ijosm.2014.08.001

67. Noll D. R., Degenhardt B. F., Johnson J. C. Multicenter osteopathic pneumonia study in the elderly: Subgroup analysis on hospital length of stay, ventilator-dependent respiratory failure rate, and in-hospital mortality rate. J. Amer. Osteopath. Ass. 2016; 116 (9): 574–587.

68. Nair A., Alaparthi G. K., Krishnan S., Rai S. et al. Comparison of diaphragmatic stretch technique and manual diaphragm release technique on diaphragmatic excursion in chronic obstructive pulmonary disease: A randomized crossover trial. Pulm. Med. 2019; 2019: 6364376. https://doi.org/10.1155/2019/6364376

69. Ritambhara Y., Tarun K., Dr. Jeyanthi. S. Effect of manual diaphragm release technique on transversus abdominis activation, pulmonary function and chest expansion — a randomized control trial. Int. J. All Res. Educat. Sci. Methods. 2024; 12 (7): 2108–2112. https://doi.org/10.56025/IJARESM.2024.1207242108.

70. Hosking S. W. The effect of osteopathic manipulative techniques on diaphragm movement and respiratory function in asymptomatic subjects; 2009. https://www.researchbank.ac.nz/server/api/core/bitstreams/43fc15bf-531e-4db0-978cab1a091e75d5/content

71. Allen T. W., D′Alonzo G. E. Investigating the role of osteopathic manipulation in the treatment of asthma. J. Amer. Osteopath. Ass. 1993; 93 (6): 654–656.

72. Yao S., Hassani J., Gagne M., George G. et al. Osteopathic manipulative treatment as a useful adjunctive tool for pneumonia. J. Vis. Exp. 2014; (87): e50687. https://doi.org/10.3791/50687


Review

For citations:


Tolmachev K.M., Potekhina Yu.P. Diaphragm functions and their disorder during artificial ventilation of the lungs (literature review). Russian Osteopathic Journal. 2025;(1):125-140. (In Russ.) https://doi.org/10.32885/2220-0975-2025-1-125-140

Views: 193


ISSN 2220-0975 (Print)
ISSN 2949-3064 (Online)